煤炭工程 ›› 2025, Vol. 57 ›› Issue (12): 162-170.doi: 10. 11799/ ce202512021

• 研究探讨 • 上一篇    下一篇

基于SwinT-SKNet 双分支融合的采煤机摇臂齿轮智能故障诊断方法

岳 东   

  1. 1. 榆林市杨伙盘矿业有限公司,陕西 榆林 719000

    2. 中国矿业大学(北京)能源与矿业学院,北京 100083

  • 收稿日期:2025-08-21 修回日期:2025-10-06 出版日期:2025-12-11 发布日期:2026-01-26
  • 通讯作者: 岳东 E-mail:594099681@qq.com

Intelligent fault diagnosis method for shearer rocker arm gears based on SwinT-SKNet dual-branch fusion

#br#   

  • Received:2025-08-21 Revised:2025-10-06 Online:2025-12-11 Published:2026-01-26
  • Contact: Dong Yue E-mail:594099681@qq.com

摘要:

针对现有故障诊断模型在应对井下强噪声环境下的非线性、非平稳信号时,存在特征提取不充分,影响诊断准确率的问题,提出了一种基于SwinT-SKNet双分支融合的采煤机摇臂齿轮故障诊断模型,实现对全局和局部特征的综合提取。该模型由简化的SwinT与轻量化SKNet两个分支组成,其中SwinT分支嵌入了BAM,进一步增强了SwinT对全局特征的提取能力;轻量化SKNet分支则利用深度可分离卷积替换普通卷积,并采用一维卷积代替SKNet中的全连接结构,提升了模型的轻量化程度,便于模型部署在移动端和边缘端设备。利用太重煤机摇臂加载试验台进行实验验证,结果表明,所提方法的准确率和精确度均高于对比模型,且在信噪比SNR=-6时,仍然保持97%以上的识别精度,充分证明了本文方法具有较强的抗噪性。

关键词: 采煤机摇臂齿轮, 故障诊断, Swin Transformer, 选择性内核网络

Abstract:

To address the insufficient feature extraction of existing fault diagnosis models when dealing with nonlinear, non-smooth signals in noisy underground environments—which greatly reduces diagnostic accuracy—this paper proposes a shearer rocker gear fault diagnosis model based on the dual-branch fusion of SwinT and SKNet, enabling comprehensive extraction of both global and local features. The model consists of two branches, the simplified SwinT and the lightweight SKNet. The SwinT branch is integrated with a BAM module to further strengthen its global feature extraction capability. In the SKNet branch, ordinary convolution is replaced with depthwise separable convolution, and its fully connected structure is substituted with one-dimensional convolution, which reduces model complexity, improves efficiency, and facilitates deployment on mobile and edge devices. The experimental validation is carried out by using the shearer rocker arm loading test bench of Tai Heavy Coal Machine, and the results show that the accuracy and precision of the proposed method are higher than that of the comparison model, and the recognition accuracy still maintains more than 97% when the signal-to-noise ratio is SNR=-6, which fully proves that the method in this paper has a strong noise immunity.

中图分类号: